. N 3
5 s . 3

Fast, Functional Text Matching:
le Pattern Language

On the interwebs:

@jamietheriveter

https://rosie-lang.org
https://gitlab.com/rosie-pattern-language

http://twitter.com/jamietheriveter
http://twitter.com/jamietheriveter
http://rosie-lang.org

[a-Z]
{ [a-z]+ "-" [0-9] }
ipv4 / 1pv6

"INFO" (ipv4 / ipv6) hostname

{ (ipv4 / ipv6) port }

lon-based language

3lues, can be composed

ci:"INFO" (ipv4 / ipv6) hostname

find:ci:"INFO" (ipv4 / ipv6) hostname

n-based language

es, can be composed

grammar

member = key ":" value
object = "{" (member ("," member)x)? "}"
array = "[" (value ("," value)x)? "]"

1n
value = ~ string / number / object / array / true / false / null
end

Expression-based language

1ctions are values, can be composed

.-

neme48, Go, others

nackage json

import word, num

ession-based language

e values, can be composed

3, Go, others

$ rosie expand 'find:"INFQ"'
Expression "INFQ"

Parses as {"INFO"}
At top level {"INFO"}
Expands to {

grammar

alias <search> = {!"INFO" .}x
<anonymous> = {"INF0"}

alias find = {<search> <anonymous>}

Expression-based language

1ctions are values, can be composed

JC $ rosie list

Rosie 1.1.0

Name Cap? Type Color Source

$ pattern default;bold builtin/prelude
. pattern default;bold builtin/prelude
n pattern default;bold builtin/prelude
ci macro builtin/prelude
error function builtin/prelude
find macro builtin/prelude
findall macro builtin/prelude
keepto macro builtin/prelude
message function builtin/prelude
~ pattern default;bold builtin/prelude

10/10 names shown

$

Expression-based language

cope

sche

unctions are values, can be composed

$ rosie list
Rosie 1.1.0

ci
error
find
findall
keepto
message

~

10/10 names shown

$

pattern default;bold
pattern default;bold
pattern default;bold
macro

function

macro

macro

macro

function

pattern default;bold

Source

builtin/prelude
builtin/prelude
builtin/prelude
builtin/prelude
builtin/prelude
builtin/prelude
builtin/prelude
builtin/prelude
builtin/prelude
builtin/prelude

Expression-based language

Functions are values, can be composed
Lexical scope

Packages like in scheme48, Go, others
Compile-time meta-programming
Prelude like in Haskell

Environment model
like a “Lisp-1~

rosie-lang.org

. SIMPLE
- COMPLEX |

-
._éf'—‘ j/;- 4
’ s N & ,/
; . \)
- e,)
- ‘r.'\‘_‘ ' L . - A *
: S | ‘*
. v J I N
3 »
\
L - K .
= '
0 &)
- f) ¢ -~
\ X |75
3

—

lllllll

Type inference

z:o€el
I'Fpx:o

Var]

Using type inerence

let f x = x + 1;;
= P ap—— Abs| Va.l_ -F ’ 'Ln‘t -> 'I_nt — <'Fun>
#

I'tpey:7— 7 I'kpe :7

A
I'Fpeye : 7 [App)

I'Nz:obpe:7

‘ [Let]
I'Fpletz=eyine; : 7

I'pe:o’ o Co
I'Fpe:o

[Inst]

F'Fpe:o a¢ free(T)
'Fpe:Va. o

(Gen|

~ SIMPLE
¢ COMPLEXJ;

~ 7 /

Al (

~ SIMPLE
._COMPLEX '

™~ =

i Writing regex on the fly Save RPL in files

~ e /
\ \ /

._COMPLEX |

Save RPL in files

 Writing regex on the fly

Reading cryptic syntax PL-like syntax

" SIMPLE
. COMPLEX |

Save RPL in files

m Writing regex on the fly

Reading cryptic syntax

Exceptions to rules

PL-like syntax

Few special cases

~ SIMPLE
< COMPLEX [

 Writing regex on the fly Save RPL in files

Reading cryptic syntax

Exceptions to rules

PL-like syntax

Few special cases

Using an ad hoc
collection of tools

Tooling included (and
extensible)

Raison d'étre

T0 Do List

/. Mine data from tools

Z-. Make predictions
that help developers

http://www.ibm.com

Raison d'étre

To Do List

/. Mine data from tools

Z-. Make predictions
that help developers

http://www.ibm.com

Raison d'étre

To Do List

/. Mine data from tools

Z-. Make predictions
that help developers

= My team had to write lots of regex

http://www.ibm.com

Raison d'étre

To Do List
/. Mine data from tools 2 B B & AN N 41 © ¥ om L
Z-. Make predictions O T O @ ® H & @ -

that help developers

= My team had to write lots of regex

= \\Ve found that regex technology does not scale
1. # of people, over time
2. # of patterns
3. data volume and velocity

http://www.ibm.com

Raison d'étre

To Do List
/. Mine data from tools Z B B v AN gl © ¥ um .
/.. Make predictions O s ® H & @ .

that help developers

= My team had to write lots of regex

= \\Ve found that regex technology does not scale
1. # of people, over time
2. # of patterns
3. data volume and velocity

= So | designed Rosie Pattern Language

http://www.ibm.com

Raison d'étre

To Do List

/. Mine data from tools

Z-. Make predictions
that help developers

= My team had to write lots of regex

= \\Ve found that regex technology does not scale > v

1. # of people, over time i GitLab
2. # of patterns osieriang.org
3. data volume and velocity

= So | designed Rosie Pattern Language

http://www.ibm.com

Raison d'étre

To Do List

/. Mine data from tools

Z-. Make predictions
that help developers

= My team had to write lots of regex

S _

GitLab

rosie-lang.org

> NC STATE
UNIVERSITY

Department of
Computer Science

= \\Ve found that regex technology does not scale
1. # of people, over time
2. # of patterns
3. data volume and velocity

= So | designed Rosie Pattern Language

http://www.ibm.com

Current ac

“If the only tool you have is a ha

On the command line:
grep -v “ M\ |\ [N/ \/”

egrep -0 '((\A{1,3D([.]\NA{L,3}) {2} [\w+([.]\w+)+)
sed -e :a' - 'N'-e '$!ba' -e 's/\n/ /¢

On the command line:
grep -v “ M\ |\ [N/ \/”

egrep -0 '((\A{1,3D([.]\NA{L,3}) {2} [\w+([.]\w+)+)
sed -e :a' - 'N'-e '$!ba' -e 's/\n/ /¢

Regex are notoriously hard to read & maintain

= Dense, cryptic syntax

= Semantics vary across implementations

= Flags that affect the semantics are not part of the pattern

= Regex do not easily compose

‘Some people, when confronted with a problem, think
I know, I'll use regular expressions.’
Now they have two problems.”

Jamie ZawinsKi
http://regex.info/blog/2006-09-15/247

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247

Regular expressions

Match a date with slashes, like 1/1/1970:

“\d{1,2}\/\d{1,2}\/\d{4}$

Match an email address (obviously!):

A((?>[a-zA-Z\A'#S%&' *+\—/=?"_‘ {1 }~]1+\x20%|" ((?
=[\x01-\x7£]) [*"\\]I\\[\x01-\x7£]) *"\x20%) * (7
<angle><))?((?2!'\.) (?>\.?[a-zA-Z\A'#S%&"'*+\-/="
A {1 ~TH)HI T ((?=[\x01-\x7£]) [*"\\]I\\[\x01-
\xX7£1)*")Q(((?!'-) [a-zA-Z\dA\-]+(?<!'-)\.)+[a-zA-Z]
{2, }INLCC(?2(?<'\[)\.) (25[0-5]|2[0-4]\d| [01]?\d?
\d)) {4} | [a-zA-Z\d\-]*[a-zA-Z\d]: ((?=[\x01-\x7f])
[*\N\NNINTTINN[\x01-\x7£])+)\]) (? (angle)>)$

Regular expressions Rosie Pattern Language

Match a date with slashes, like 1/1/1970: 1
{ date.slashed ¢}
"\d{1,2}\/\d{1,2}\/\d{4}$ ik

Match an email address (obviously!):

A((?>[a-zA-Z\A'#S%&' *+\—/=?"_‘ {1 }~]1+\x20%|" ((?
=[\x01-\x7£]) [*"\\]I\\[\x01-\x7£]) *"\x20%) * (7
<angle><))?((?2!'\.) (?>\.?[a-zA-Z\A'#S%&"'*+\-/="
A {1 ~TH)HI T ((?=[\x01-\x7£]) [*"\\]I\\[\x01-
\xX7£1)*")Q(((?!'-) [a-zA-Z\dA\-]+(?<!'-)\.)+[a-zA-Z]
{2, }INLCC(?2(?<'\[)\.) (25[0-5]|2[0-4]\d| [01]?\d?
\d)) {4} | [a-zA-Z\d\-]*[a-zA-Z\d]: ((?=[\x01-\x7£f])
[*\N\NNINTTINN[\x01-\x7£])+)\]) (? (angle)>)$

{ net.email

Other regex collections”? Grok does this.

Grok sits on top of regular expressions, so any regular expressions are valid in
grok as well. The regular expression library is Oniguruma, and you can see the full

k .
Analysis

a L
T Wl — <

/ Monitoring
/ logstash

Alerting
IIIII

supported regexp syntax on the Oniguruma site.

=

o ©

Other regex collections”? Grok does this.

Grok sits on top of regular expressions, so any regular expressions are valid in
grok as well. The regular expression library is Oniguruma, and you can see the full

lll \ ; A:.hlvmg‘
Tl — O

/ Monitoring
/ logstash

Alerting

supported regexp syntax on the Oniguruma site.

=

Caveats S—

+ Name collisions? Some versions will use the first .-I|I
one, some the last

+ No packages, hierarchy, or dependencies
+ They are still unreadable and unmaintainable!

And they don't play well with dev tools

grok$ diff orig copy
18c18

< QUOTEDSTRING (?>(?<!\\)(?>"(?>\\. |

26Cc26

< IPV6 ((([0-9A-Fa-f1{1,4}:){7}([0-9A-Fa-f]{1,4}]|:))
«?\d) (\.(25[0-5]1|2[@0-4]1\d|1\d\d | [1-9]12\d)){3})|:)) | ((
@d| [1-9]17\d) (\.(25[0-5]1|2[0-4]1\d|1\d\d|[1-912\d)){3}) |:)) | (([0-9A-Fa-f1{1,4}:){4}(((:[0-9A-

> QUOTEDSTRING (?>(?(?2<!\)(?>"(7?>\\.

NN TH) " LS T (2ANG [NN H) 40) [P27 (AN [I\ T+H)+7) | 7))

[ANN"TH)4+" " (25 (25\N\L | [N\ H)+") | " (27 (25\\. [[\\']+)+7) | " 7))

(([0-9A-Fa-f]1{1,4}:){6}(: [0-9A-Fa-f]1{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9] @
(0-9A-Fa-f1{1,4}:){5}(((:[0-9A-Fa-f]{1,4}){1,2})|:((25[0-5]|2[0-4]\d|1\d\ @

Fa-f]{1)4}){1)3})|((:[G—QA—Fa_f]{l,i

€4})?7:((25[0-5]1|2[0-4]\d|1\d\d | [1-9]?\d) (\. (25[0-5] |2[0-4]\d |1\d\d | [1-9]?\d)){3}))|:)) | (([0-9A-Fa-f]1{1,4}:){3}(((:[0-9A-Fa-f]{ @
©1,4}){1,4}) |((:[0-9A-Fa-f]{1,4}){0,2}:((25[0-5] |2[0-4]\d|1\d\d | [1-9]?\d) (\.(25[0-5]|2[0-4.

§A-Fa-f]1{1,4}:){2}(((: [0-9A-Fa-f]{1,4}){1,5})

((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5] |2[0-4]\d

\d|1\d\d | [1-9]12\d)){3}))|:)) | (([0-9&
1\d\d | [1-917\d) (\. (25[0-5] |2[0-4]\d 2

& |1\d\d| [1-9]1?\d)){3}))|:)) | (([0-9A-Fa-f]{1,4}:){1}(((:[0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,4}:((25[0-5]|2[0-4]\d|1\=

Gd\d|[1-9]17\d) (\.(25[0-5] |2[@-4]\d |1\d\d | [1-9]

2\d)){3}))|:)) | (:(((:[0-9A-Fa-f1{1,4}){1,7})

& [2[0-4]\d|1\d\d | [1-9]7?\d) (\. (25[0-5] |2[0-4]\d |1\d\d| [1-9]1?\d)){3})) |:))) (%.+)?

((:[0—9A—Fa—f]{1p4}){015}:((25[0‘5]?

> IPV6 ((([0-9A-Fa-f]1{1,4}:){7}([0-9A-Fa-f]1{1,4}|:))|(([0-9A-Fa-f]{1,4}:){6}(:[0-9A-Fa-f]{1,4}|((25[0-5]|2[0-4]\d|1\d\d|[1-9] =
((

@7\d) (\.(25[0-5] |2[0-4]1\d|1\d\d

Gd| [1-917\d) (\. (25[0-5] |2[@-4]1\d|1\d\d | [1-9.

€4})7:((25[0-51|2[0-4]1\d|1\d\d|

«1,43){1,4})|((:[0-9A-Fa-f]{1,4}){0,3}:((25
@A-Fa-f1{1,4}:){2}(((:[0-9A-Fa-f1{1,4}){1,5})

[1-9]17\d)){3})

[1-9]172\d) (\. (25

1))

((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5] |2[0-4]\d

0-9A-Fa-f1{1,4}:){5}(((: [0-9A-Fa-f1{1,4}){1,2})|: ((25[0-5] |2[0-4]1\d|1\d\ =
2\d)){3}) |:)) | (([0-9A-Fa-f1{1,4}:){4}(((:[0-9A-
0-5] |2[0-4]1\d|1\d\d | [1-917\d)){3}))|:)) | (([0-9A-Fa-f1{1,4}:){3}(((:[0-9A-Fa-fl{®
0-5] |2[0-4]1\d|1\d\d | [1-917\d) (\. (25[0-5] |2 [0-4]

Fa-f]1{1,4}){1,3})|((:[0-9A-Fa-f]{1, @

\d|1\d\d | [1-9]12\d)){3}))|:)) | (([0-9&
1\d\d | [1-917\d) (\. (25[0-5] |2[0-4]\d 2

& |1\d\d| [1-9]?\d)){3}))|:)) | (([0-9A-Fa-f]1{1,4}:){1}(((: [0-9A-Fa-f]{1,4}){1,6})|((:[0-9A-Fa-f]{1,4}){0,3}:((25[0-5]|2[0-4]\d|1\ &

Gd\d|[1-917\d) (\. (25[0-5]|2[0-4]1\d|1\d\d | [1-9]

2\d)){3}))[:)) | (:(((:[0-9A-Fa-f]1{1,4}){1,7})

G [2[0-41\d|1\d\d | [1-9]17\d) (\. (25[0-5] |2[0-4]\d |1\d\d | [1-912\d)){3})) |:))) (%.+)?

grok$

((:[0-9A-Fa-f1{1,4}){0,5}:((25[0-5] @

And they don't play well with dev tools

| grok$ diff orig copy
' 18c18
| < QUOTEDSTRING (7> (48 L L T L N N T

> QUOTEDSTRING (7> (] RPL has syntax like a programming language

26c26

< IPV6 ((([0-9A-Fa- ~4]\d|1\d\d|[1-9] @
&7\d) (\.(25[0-5] |20 251 12[0-41\d|1\d\ 2
@d| [1-9]17\d) (\.(25[@ ' | ((: [0-9A-Fa-f1{1, @
G43})7: ((25[0-5]2[0- — | rgadg like code 3}(((:[0-9A-Fa-f1{®
crraritnar i@ — It diffs like code) (33 [0-1 |210-41d8
G |[1\d\d|[1-9]17\d)){3 :)5[0-5] |2[0-4]1\d |1\ =
gd\d| [1-917\d) (\. (2 — |t debugs like code 43){0,5}: ((25[0-5] @

€ |2[0-4]\d|1\d\d | [1

> IPV6 ((([0-9A-Fa- 0-4]\d|1\d\d| [1-9] @
«?7\d) (\.(25[0-5]|2[@ 0-5]1|2[0-4]\d|1\d\ =@
&d| [1-91?2\d) (\.(25[@ | ((: [0-9A-Fa-f]{1, @
§4})7:((25[0-5]|2[0- 3}(((:[0-9A-Fa-fl{®
'Gl 4%){1,4}) | ((:[0-9 : : : : §))133)):)) [(([0-9=
SA-Fa-f1{1,4}:){2}(® A= ; - , 4 Y A A AAY 31780 . (25[0-5]1|2[0-4]\d=
li 1\d\d | [1- 9]7\d)){3}))|))|(([0 _9A- Fa f]{l 4}:){1}((([0 OA-Fa- f]{1 4}){1 6})|(([0-9A-Fa-f]{1, 4}){@ 3} ((25[0 -5]12[0-4]\d |1\ =
&@d\d| [1-9]1?\d) (\.(25[0-5] |2[0-4]\d |1\d\d | [1-9]1?\d)){3}))|:)) | (:(((:[0-9A-Fa-f]1{1,4}){1,7})|((:[0-9A-Fa-f]1{1,4}){0,5}:((25[0-5] =
G [2[0-4]\d|1\d\d | [1-9]?\d) (\. (25[0-5] |[2[@-4]\d|1\d\d | [1-9]?\d)){3}))|:))) (%.+)?
- grok$

Regex performance is surprisingly variable

Regular expression matching can be very efficient:
linear time in the size of the input.

“The worst-case exponential-time backtracking strategy

[Is] used almost everywhere [but grep and REZ2], including
ed, sed, Perl, PCRE, and Python.”

(Russ Cox https://swtch.com/~rsc/regexp/regexp2.htmil)

https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)

Regex performance is surprisingly variable

Matching this 29-character string takes around 36 seconds in Perl*
$input = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaa’;
$re = “a?a?a?a?a?a?a?a?a?a?a?a’?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a”?
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa’;

And this more realistic example takes around 65 seconds in Perl”
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
Bronze,Bronze,Gold,Silver™;
$re = “M.*?,){29)Gold”;

(*) Perl 5.16.3 darwin-thread-multi-2level

Regex performance is surprisingly variable

RS T . R g o b

In RPL, expressions are greedy and possessive.

Perl”
—» Backtracking is explicit PP
— To get exponential backtracking, you write it that way
— Joday (v1.1.x) such RPL patterns have exponential size
RPL makes it difficult to be accidentally inefficient. 525 o6

(*) Perl 5.16.3 darwin-thread-multi-2level

Rosle Patte

"All progress depends on the unree
George Berne

RPL Is designed like a programming language

———— —x— Mode: rpl; —*-

——== Jjson.rpl rol patterns for processing json input

———— © Copyright IBM Corporation 2016, 2017.
———— LICENSE: MIT License (https://opensource.org/licenses/mit-license.html)
———— AUTHOR: Jamie A. Jennings

package json
import word, num
local key = word.dq

local string word.dq
local number num.signed_number

local true = "true"
local false = "false"
local null = "null"”

grammar
value = ~ string / number / object / array / true / false / null

member = key ":" value

object = "{" (member ("," member)x)? "}"

array = "[" (value ("," value)x)? "]"
end

-— test value accepts "true", "false", "null"

-— test value rejects "ture", "f", "NULL"

—— test value accepts "o0", "123", "-1", "1.1001", "1.2el10", "1.2e-10", "+3.3"

-— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""
—-— test value rejects "hello”, "\"this string has no \\\"final quotel\\\" "

-— test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."

-— test value accepts "I[]", "I[1, 2, 3.14, \"V\", 6.02e23, truel", "I[1, 2, [7], [I[8]]]"
—— test value rejects (11", "I[", "[[]", "{1, 2}"

—-— test value accepts "{\"one\":1}", "{ \"one\" :1}", "{ \"one\" : 1 }"
—— test value accepts "{\"one\":1, \"two\": 2}", "{\"one\":1, \"two\": 2, \"array\":[1,2]}"
—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"

RPL Is designed like a programming language

—%— Mode:

rpl; —k-—

json.rpl rol patterns for processing json input

© Copyright IBM Corporation 2016, 2017.
LICENSE: MIT License (https://opensource.org/licenses/mit-license.html)
AUTHOR: Jamie A. Jennings

package json

import word, num

() local key = word.dq
‘6 local string = word.dq
‘{\\@ local number = num.signed_number
{55“ local true = "true"
6585 % local false = "false"
\\ @0 local null = "pull”
\QgQ grammar
* value = ~ string / number / object / array / true / false / null
‘(\\ \6 member = key ":" value
(‘b’ object = "{" (member ("," member)x)? "}"
'\Q array = "[" (value ("," value)x)? "]"
€>>Q\ €b end
<S}95 QSE;‘ -— test value accepts "true", "false", "null"
. XV -— test value rejects "ture", "f", "NULL"
{S. —— test value accepts "o0", "123", "-1", "1.1001", "1.2e10", "1.2e-10", "+3.3"
\:S(\ Qb -— test value accepts "\"hello\"", "\"this string has \\\"embedded\\\" double quotes\""
<<F) Q —— test value rejects "hello”, "\"this string has no \\\"final quote\\\" "
QSS} K§§\ -— test value rejects "--2", "9.1.", "9.1.2", "++2", "2E02."
\"o
‘sy\\sp -- test value accepts "I[]"™, "I[1, 2, 3.14, \"V\", 6.02e23, truel", "I[1, 2, [7], [I[8]]]"
-- test value rejects "[]1™, ™[, "[[]", "{1, 2}"
—-— test value accepts "{\"one\":1}", "{ \"one\" :1}", "{ \"one\" : 1 }"
—— test value accepts "{\"one\":1, \"two\": 2}", "{\"one\":1, \"two\": 2, \"array\":[1,2]}"
—— test value accepts "[{\"v\":1}, {\"v\":2}, {\"v\":3}]"

Can your ‘grep’ do this?

Q NAMED PATTERNS

$ curl -s www.google.com | rosie grep -o subs net.url
http://schema.org/WebPage
http://www.google.com/imghp?hl=en&tab=wi
http://maps.google.com/maps?hl=en&tab=wl
https://play.google.com/?hl=en&tab=w8
http://www.youtube.com/?gl=US&tab=wl
http://news.google.com/nwshp?hl=en&tab=wn
https://mail.google.com/mail/?tab=wm
https://drive.google.com/?tab=wo
https://www.google.com/intl/en/options/
http://www.google.com/history/optout?hl=en
https://accounts.google.com/ServicelLogin?hl=en&passive=true&continue=http://www.google.com/
https://plus.google.com/116899029375914044550

$

-0 Output format
subs ==> sub-matches

pattern is net.url
==> namespace net, pattern url

Can your ‘grep’ do this?

CUSTOMIZABLE
OUTPUT

HIGHLIGHTING

$ rosie match 'word.any (net.any)+' resolv.conf
abc.aus.examp le.com

1bm.com mylocaldomain.myisp.net example.com
192.9.201.1

192.9.201.2
de9:4789:96dd:03bd: :1

Can your ‘grep’ do this?

CUSTOMIZABLE
OUTPUT

HIGHLIGHTING

$ rosie match 'word.any (net.any)+' resolv.conf
abc.aus.examp le.com

1bm.com mylocaldomain.myisp.net example.com
192.9.201.1

192.9.201.2
de9:4789:96dd:03bd: :1

$ rosie ——colors='net.1ipv4=blue;bold’' match 'word.any (net.any)+' resolv.conf
domain abc.aus.example.com

search 1bm.com mylocaldomain.myisp.net example.com
nameserver 192.9.201.1

nameserver 192.9.201.2

nameserver fde9:4789:96dd:03bd::1

$

CUSTOMIZABLE
OUTPUT
HIGHLIGHTING

Can your ‘grep’ do this?

$ sed -n 46,49p /var/log/system.log
Jul 30 10:18:42 Jamies—-Compabler com.apple.xpc.launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService
[669]): Service exited due to signal: Killed: 9 sent by com.apple.CoreSimulator.CoreSimu[669]

Jul 30 10:18:42 Jamies—-Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

Jul 30 10:18:43 Jamies—Compabler ContainerMetadataExtractor[92065]: objc[92065]: Class BRMangledID is 1i
mplemented in both /System/Library/PrivateFrameworks/CloudDocs.framework/Versions/A/CloudDocs (@x7fff8b
848c88) and /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx
tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528). One of the two will be used. Which
one 1s undefined.

Jul 30 10:18:50 Jamies—Compabler systemstats[71]: assertion failed: 17G65: systemstats + 914800 [D1E75C
38-62CE-3D77-9ED3-5F6D38EF0676] : 0x40

$

$ sed -n 46,49p /var/log/system.log | rosie match all.things

Jul 30 10:18:42 - com.apple.xpc. launchd[1l] (com.apple.CoreSimulator.CoreSimulatorService

[669]): : : 9 com.apple.CoreSimulator.CoreSimu[669]

Jul 30 10:18:42 - [71]: : 17G65: + 914800 [D1E/5C

38=-62CE-3D77-9ED3-5F6D38EF0676]: 0x40

Jul 30 10:18:43 - [92065]: [92065]: BRMang ledID
/System/Library/PrivateFrameworks/CloudDocs. framework/Versions/A/CloudDocs (@x7fff8b

848c88) /System/Library/PrivateFrameworks/CloudDocsDaemon. framework/XPCServices/ContainerMetadataEx

tractor.xpc/Contents/Mac0S/ContainerMetadataExtractor (0x10a8e0528).

Jul 30 10:18:50 - [71]: : 17G65: + 914800 [D1E/5C
36=62CE-3D77-9ED3-5F6D38EF0676]: 0x40

$ [

STRUCTURED

Can your ‘grep’ do this?
OUTPUT OPTION

$ head -n 1 /var/log/system.log | rosie grep -o jsonpp num.denoted_hex
{nsn: 1'
nen: 80,
"data": "Jul 29 16:17:13 Jamies—-Compabler timed[90268]: settimeofday({@x5b5e20c9,0x75bd3",
"subs":
[{IISII : 62,
nen: 72,
"data": "0x5b5e20c9",
"subs":
[{nsn: 64,
nen: 72’
"data': "5b5e20c9", w«
"type": "num.hex"}],
"type": "num.denoted_hex"},
{nsn: 73’ -
nen: 80,
"data": "@x75bd3", €— Tt
"subs": o
[{nsu: 75'
nen: 80,
"data": "75bd3", 4
"type": "num.hex"}],
"type": "num.denoted _hex"}],
lltypell: ll*ll}
$

Matching line

N,
b,
I
.....
b,
b,
I

num.denoted hex

N,y
N,y
Ny
a
.....
b,
b,
a,
b,

+ num.hex, a sub-match

Rosle
Implementation

”I"—.l.n,

{ll ll
Ilell " 12

lltypell "net . anyll ,
"data": "192.168.0.1",
"subs"':
[{IISII: 1’
||e||: 12'
lltypell : llnet . ipll ,
"data": "192.168.0.1",
""subs"':
[{IISII: 1'
||e||: 12’
"type'": "net.1ipv4",
"data": "192.168.0.1"}]

é s nevelopment ¢ dldlysIs ws; +]

“wa"r'eeseanch

b

e?=

HﬂSggen

§S ST géﬂ
BN L I § technology 5 3 g?:_l_‘ =k |
.._-ﬂm b =>iad
ggﬁg §> used%“ 192- 168. @l 1
= =s
§§+-E 1 €CQI=S
.- R sl priaty “ as +—
[esearch IeNce i @ =~ 1
“iinformationz=ts fE="
" arpcessing 4 =2 : L. 16)
et .An - : g urz ; p— K-

Matchlng Englne

Performe

‘| want to believe”

Total time (seconds)

250.00

225.00

200.00

175.00

150.00

125.00

100.00

75.00

50.00

25.00

0.00

® rosie -0 json

® rosie_dev -0 json
grok/ruby

+ grok/jruby

Grok/ruby

Failed with utf8 error
before finishing

Failed with utf8 error
before finishing

Grok/jruby

0 1,000,000

2,000,000
Number of input lines (syslog)

3,000,000

4,000,000

Performance

Worse

Rosie 1.0.0 \7

Better
" Notes: h
1. Log entry parsing is one narrow use case.
2. Hard to design fair comparisons.
3. Rosie output is nested JSON; Grok output
. isflat lists. Dy

Debugging

“To err is human, but to really fc
need a computer.”

Trace a (mis-)match

¢ date | rosie match date.us_dashed

$

$ date | rosie match date.us_dashed

$:
¢ date | rosie trace date.us_dashed Trace a (mIS-)matCh

Expression: {month "-" day "-" short_long_year}
Looking at: {Mon Jul 30 12:43:09 EDT 2018)» (input pos =
No match

Pattern definition

—— Expression: month
Looking at: {Mon Jul 30 12:43:09 EDT 2018) (input pos =1
No match
L Expression: {{"1" [0-2]} / {{"e"}? [1-9]}} Input text
Looking at: {Mon Jul 30 12:43:09 EDT 2018)» (input pos = 1)
No match
— Expression: {"1" [0-2]}
Looking at: ¢{Mon Jul 30 12:43:09 EDT 2018) (input pos = 1)
No match
—— Expression: "1"
Looking at: {Mon Jul 30 12:43:09 EDT 2018) (input pos = 1)
No match
—— Expression: [0-2]
Not attempted
—— Expression: {{"0"}? [1-9]}
Looking at: ¢{Mon Jul 30 12:43:09 EDT 2018) (input pos = 1)
No match
—— Expression: "-"
Not attempted
—— Expression: day
Not attempted
—— Expression: "-"]
Not attempted Matching steps

—— Expression: short_long_year
Not attempted

Read-eval-print loop

$ rosie repl

Rosie 1.0.0-sepcomp3

Rosie> import destructure as des
Rosie> .list des.x

Name Cap? Type Color Source
[snip]

numa lpha Yes pattern default;bold destructure
parentheses Yes pattern default;bold destructure
rest Yes pattern default;bold destructure
semicolons Yes pattern default;bold destructure
sep pattern default;bold destructure
s lashes Yes pattern default;bold destructure
term Yes pattern default;bold destructure
tryall pattern default;bold destructure
~ pattern default;bold builtin/prelude

24/24 names shown
Rosie>

Rosie> .match des.tryall "(1.2; 3.77; 0)"
{"data": "(1.2; 3.77; 0)",
"e': 15,
IISII: 1’
"subs":
[{"data": "(1.2; 3.77; 0)",
"e'": 15,
"S": 1'
"subs":
[{"data": "1.2; 3.77; 0",
"e'': 14,
"S": 2’
"subs™:
[{lldatall. ll1.2ll’
"e'": 5,
IISII: 2’
"type": "des.find.<search>"},

.............. S L L RGL L LELE LR EELEEEE LN o 1o
{"data": " 3.77",
"e': 11,
llsll: 6’
Mtype": "des.find. <search>"} |
-- snip

{lldatall. il OII
"e'': 14,

N1, 1"

Read-eval-print loop

4+ Define patterns
+ ITry them
+ Debug (trace) them

Rosie> .match des.tryall "(1.2; 3.77; 0)"
{"data": "(1.2; 3.77; 0)",
"e': 15,
IISII: 1’
"subs":
[{"data": "(1.2; 3.77; 0)",
"e'": 15,
IISII: 1'
"subs":
[{"data": "1.2; 3.77; 0",
"e'': 14,
"S": 2’

"subs":
[{"data"'
"e'": 5,

IISII: 2’
"type": "des.find.<search>"},

.............. S reerrrrsrrrerrerres G
{lldatall: ll p
"e': 11,

llsll. 6’
"type": "des.find. <search>"}

'"""""{-n;a-a-{-a-l;;"l --------------------- Ship
"e'': 14,

N ll, 1"

Read-eval-print loop

4+ Define patterns
+ ITry them
+ Debug (trace) them

Executable unit tests

———— net.rpl Rosie Pattern Language patterns for hostnames, 1p addresses, and such

package net
import num

[snip]

ipv4 = 1p_address_v4
-— test 1ipv4 accepts "0.0.0.0", "1.2.234.123", "999.999.999.,999"
—— test 1pv4 rejects "1234.1.2.3", "1.2.3", "111.222.333.", "111.222.333..444"

ipve = 1ipv6_mixed / ip_address_vb
-— test 1pv6 includes 1ipv4 "::192.9.5.5", "::FFFF:129.144.52.38"
-— test 1pv6 excludes 1ipv4 "1080::8:800:200C:417A", "2010:836B:4179::836B:4179"

Executable unit tests

$ rosie test /usr/local/lib/rosie/rpl/x.rpl

/usr/local/lib/rosie/rpl/all.rpl
all 4 tests passed
/usr/local/lib/rosie/rpl/csv.rpl
no tests found
/usr/local/lib/rosie/rpl/date.rpl
all 89 tests passed
/usr/local/lib/rosie/rpl/id.rpl
all 51 tests passed
/usr/local/lib/rosie/rpl/json.rpl
all 45 tests passed
/usr/local/lib/rosie/rpl/net.rpl
all 125 tests passed
/usr/local/lib/rosie/rpl/num.rpl
all 80 tests passed
/usr/local/lib/rosie/rpl/os.rpl
no tests found
/usr/local/lib/rosie/rpl/time.rpl
all 85 tests passed
/usr/local/lib/rosie/rpl/ts.rpl
all 27 tests passed
/usr/local/lib/rosie/rpl/word.rpl
all 20 tests passed
$

@ Part of the documentation
4 Regression when making changes
@ Use them in app build/compile stage

Formal be

“‘Language is a process of free ¢
laws and principles are fixed”

Formal basis

Chomsky hierarch

recursively enumerable

context-sensitive

context-free

regular

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

recursively enumerable
context-sensitive

context-free

= e — .
o — —
~o & =

'*

~reqgular

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford
Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

recursively enumerable

PDESEREY, T V2 T AR - AN
X e . AR,

gdntext-se

-

e » "W
BARS,

nsi

context-free

=, o — .
.~ —_
a X S
.- -~

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
and all PEG
grammars

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford

Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Formal basis

Chomsky hierarch

2 ,._A.
L v A TR X5 rp = g
Y- N pyr N - ,,".'~ "

gdntext-se

e » "W
BARS,

context-free

= e — .
Iy —
~o & - -

.- -

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
and all PEG
grammars

Parsing Expression Grammars:
A Recognition-Based Syntactic Foundation

Bryan Ford

Massachusetts Institute of Technology
Cambridge, MA

baford @ mit.edu

Abstract

For decades we have been using Chomsky’s generative system of
grammars, particularly context-free grammars (CFGs) and regu-
lar expressions (REs), to express the syntax of programming lan-
guages and protocols. The power of generative grammars to ex-
press ambiguity is crucial to their original purpose of modelling
natural languages, but this very power makes it unnecessarily diffi-
cult both to express and to parse machine-oriented languages using
CFGs. Parsing Expression Grammars (PEGs) provide an alterna-
tive, recognition-based formal foundation for describing machine-
oriented syntax, which solves the ambiguity problem by not intro-
ducing ambiguity in the first place. Where CFGs express nondeter-
ministic choice between alternatives, PEGs instead use prioritized
choice. PEGs address frequently felt expressiveness limitations of
CFGs and REs, simplifying syntax definitions and making it un-
necessary to separate their lexical and hierarchical components. A
linear-time parser can be built for any PEG, avoiding both the com-
plexity and fickleness of LR parsers and the inefficiency of gener-
alized CFG parsing. While PEGs provide a rich set of operators for
constructing grammars, they are reducible to two minimal recogni-

1 Introduction

Most language syntax theory and practice is based on generative
systems, such as regular expressions and context-free grammars, in
which a language is defined formally by a set of rules applied re-
cursively to generate strings of the language. A recognition-based
system, in contrast, defines a language in terms of rules or predi-
cates that decide whether or not a given string is in the language.
Simple languages can be expressed easily in either paradigm. For
example, {s € a* | s = (aa)"} is a generative definition of a trivial
language over a unary character set, whose strings are “constructed”
by concatenating pairs of a’s. In contrast, {s € a* | (|s| mod 2=0)}
is a recognition-based definition of the same language, in which a
string of a’s is “accepted” if its length is even.

While most language theory adopts the generative paradigm, most
practical language applications in computer science involve the
recognition and structural decomposition, or parsing, of strings.
Bridging the gap from generative definitions to practical recogniz-
ers is the purpose of our ever-expanding library of parsing algo-
rithms with diverse capabilities and trade-offs [9].

tion schemas developed around 1970, TS/TDPL and gTS/GTDPL,
which are here proven equivalent in effective recognition power. Chomsky’s generative system of grammars, from which the ubiqui-

A Text Pattern-Matching
Tool based on Parsing
Expression Grammars

Roberto Ierusalimschy!

' PUC-Rio, Brazil

This is a preprint of an article accepted for publication in Software: Practice and Experience;
Copyright 2008 by John Willey and Sons.

SUMMARY

Current text pattern-matching tools are based on regular expressions. However, pure regular
expressions have proven too weak a formalism for the task: many interesting patterns either are
difficult to describe or cannot be described by regular expressions. Moreover, the inherent non-
determinism of regular expressions does not fit the need to capture specific parts of a match.

Motivated by these reasons, most scripting languages nowadays use pattern-matching tools that
extend the original regular-expression formalism with a set of ad-hoc features, such as greedy
repetitions, lazy repetitions, possessive repetitions, “longest match rule”, lookahead, etc. These
ad-hoc extensions bring their own set of problems, such as lack of a formal foundation and complex
implementations.

In this paper, we propose the use of Parsing Expression Grammars (PEGs) as a basis for pattern
matching. Following this proposal, we present LPEG, a pattern-matching tool based on PEGs for
the Lua scripting language. LPEG unifies the ease of use of pattern-matching tools with the full
expressive power of PEGs. Because of this expressive power, it can avoid the myriad of ad-hoc
constructions present in several current pattern-matching tools. We also present a Parsing Machine
that allows a small and efficient implementation of PEGs for pattern matching.

KEY WORDS: pattern matching, Parsing Expression Grammars, scripting languages

Comparison to regex: RPL is based on a different formalism

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %

= Supports recursive pattern definitions

grammar
ba'L — { II(II bal? II)II }+
end

Comparison to regex: RPL is based on a different formalism

=T o= >
2 >

Parsing Expression Grammars

| | Rosie Pattern Language
= Strictly more powerful than regular expressions f (and all PEG grammars) }

= Supports recursive pattern definitions

grammar
ba'L — { II(II bal? II)II }+
end

Perl: (~(\((?-1)?\))+$)

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language 3
= Strictly more powerful than regular expressions f (and all PEG grammars) %

= Supports recursive pattern definitions

= Packrat implementation guarantees linear time

Comparison to regex: RPL is based on a different formalism

B N
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %

= Supports recursive pattern definitions
= Packrat implementation guarantees linear time
= Rosie uses a Matching VM implementation

= Uses less space

= Linear time for non-grammar, non-lookaround

Comparison to regex: RPL is based on a different formalism

=T o= >
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %
= Supports recursive pattern definitions "
= Packrat implementation guarantees linear time
= Rosie uses a Matching VM implementation
= Uses less space
= Linear time for non-grammar, non-lookaround

= EXpressions are greedy and possessive 2 "'x" always fails!

{ ! IIXII] }* IIXII

Comparison to regex: RPL is based on a different formalism

=T o= >
2 >

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %
= Supports recursive pattern definitions "
= Packrat implementation guarantees linear time
= Rosie uses a Matching VM implementation
= Uses less space
= Linear time for non-grammar, non-lookaround

= EXpressions are greedy and possessive 2 "'x" always fails!
{ ! IIXII] }* IIXII

find:"x"

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
| | £ Rosie Pattern Language %
= Strictly more powerful than regular expressions f (and all PEG grammars) %
= Supports recursive pattern definitions "
= Packrat implementation guarantees linear time
= Rosie uses a Matching VM implementation
= Uses less space
= Linear time for non-grammar, non-lookaround

= Expressions are greedy and possessive x "'x" always fails!

Automated conversion of regex to RPL {1x" Lk X

= A practical implementation is underway find:"x"

A “little language” built like a big language A

1. Parser is Rosie itself (self-hosted)

More user

2. Macro expansion phase control

» Today, macros written in Lua

* Future? Open for
3. Conversion to tree representation Tooling

4. Optimizations

* Inlining (always possible with pure functions!)
 Common sub-expression elimination A
 Lots of small opportunities also New
5. Code generation Opfimizations
an Be
* Further optimizations, e.g. peephole

Static
Analysis!

Added

Using Roslie In programs

[Today: J THE

@ python’

PROGRAMMING
LANGUAGE

[Once and future:

PROGRAMMING

Language

ﬁ‘d? >Java

V4
(P ORACLE N
|
|

Clojure

Join the Rosie community!

%g% Contribute Patterns T Write Tools

Implement features

« Domain-specific » Package info « Optimizations
= Authoritative = Better trace (compact) = Language-specific libs

» E.g. from RFC . Linter » Improve or create

. Python, R, Go,

= Non-English patterns! = Notebook (Jupyter?) > Python, R, Go, Java

. - . . = User-written extensions
= “Looks like” (recognizers) = Integrations

. » Output encoders
« Byte-encoded data? » scikit-learn . Macros
» Spark

» Character sets

Join the Rosie community!

%g% Contribute Patterns T Write Tools

Or: brew install rosie
Also: pip install rosie

Impleme