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But…


why???



Type inference
Using type inference
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Reading cryptic syntax PL-like syntax

Exceptions to rules Few special cases

Using an ad hoc 
collection of tools

Tooling included (and 
extensible)

Writing regex on the fly Save RPL in files
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Current approach: regex
“If the only tool you have is a hammer…”   

                                                    Abraham Maslow







Regular expressions as tools:

grep  -v “^#\|^’\|^\/\/” 
egrep -o '((\d{1,3})([.]\d{1,3}){2}|\w+([.]\w+)+)'   
sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/ /g'

On the command line:
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Regex are notoriously hard to read & maintain

▪ Dense, cryptic syntax  

▪ Semantics vary across implementations 

▪ Flags that affect the semantics are not part of the pattern 

▪ Regex do not easily compose

“Some people, when confronted with a problem, think  
 ‘I know, I'll use regular expressions.’ 
 Now they have two problems.” 

Jamie Zawinski 
http://regex.info/blog/2006-09-15/247

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247






Regular expressions

Match an email address (obviously!): 

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?
=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?
^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-
\x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]
{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])
[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$ 

Match a date with slashes, like 1/1/1970: 

^\d{1,2}\/\d{1,2}\/\d{4}$
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Other regex collections?  Grok does this. 

Caveats 
✦ Name collisions? Some versions will use the first 

one, some the last 
✦ No packages, hierarchy, or dependencies 
✦ They are still unreadable and unmaintainable! 
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And they don’t play well with dev tools

RPL has syntax like a programming language


→ It reads like code  
→ It diffs like code 
→ It debugs like code







Regex performance is surprisingly variable

Regular expression matching can be very efficient: 
linear time in the size of the input.

“The worst-case exponential-time backtracking strategy 
[is] used almost everywhere [but grep and RE2], including 
ed, sed, Perl, PCRE, and Python.”   

(Russ Cox https://swtch.com/~rsc/regexp/regexp2.html)

https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)


Regex performance is surprisingly variable

 Matching this 29-character string takes around 36 seconds in Perl* 
$input = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”; 
$re = “a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”; 

 And this more realistic example takes around 65 seconds in Perl* 
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, 
Bronze,Bronze,Gold,Silver”; 
$re = “^(.*?,){29}Gold”; 

(*) Perl 5.16.3 darwin-thread-multi-2level
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 Matching this 29-character string takes around 36 seconds in Perl* 
$input = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”; 
$re = “a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”; 

 And this more realistic example takes around 65 seconds in Perl* 
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, 
Bronze,Bronze,Gold,Silver”; 
$re = “^(.*?,){29}Gold”; 

(*) Perl 5.16.3 darwin-thread-multi-2level

In RPL, expressions are greedy and possessive.


→ Backtracking is explicit 
→ To get exponential backtracking, you write it that way   
→ Today (v1.1.x) such RPL patterns have exponential size 

RPL makes it difficult to be accidentally inefficient.



Rosie Pattern Language
“All progress depends on the unreasonable [woman]” 

George Bernard Shaw, paraphrased
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Modules

Identifie
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Whitespace

Quoted lite
rals

Macro
s 

(not sh
own)Unit te

sts



Can your ‘grep’ do this?

-o     Output format

         subs ==> sub-matches

pattern is  net.url 
  ==> namespace net, pattern url

Named patterns
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Matching line

num.denoted_hex

num.hex, a sub-match

Structured 
output option

Can your ‘grep’ do this?



json
color

boolean

Matching Engine

RPL

Compiler

+

Rosie 
Implementation 



Performance
“I want to believe”                 Fox Mulder, FBI



Performance
Worse

Better

Grok/ruby

Grok/jruby

Rosie 1.0.0

Notes:

1. Log entry parsing is one narrow use case.

2. Hard to design fair comparisons.

3. Rosie output is nested JSON; Grok output 

is flat lists.



Debugging
“To err is human, but to really foul things up you 

need a computer.”  

                                                                Paul R. Ehrlich



Trace a (mis-)match



Trace a (mis-)match

Pattern definition

Input text

Matching steps



Read-eval-print loop
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✦ Debug (trace) them
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Executable unit tests

Part of the documentation

Regression when making changes

Use them in app build/compile stage



Formal basis
“Language is a process of free creation [though] its 
laws and principles are fixed”             Noam Chomsky
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By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226
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Rosie 
Pattern 
Language 
(and all PEG 
grammars)

Regular 
Expressions  
(strict) 

Chomsky hierarchy

Open 
Question: 
PEG > CFG 

Formal basis
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Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

▪ Supports recursive pattern definitions 

▪ Packrat implementation guarantees linear time

▪ Rosie uses a Matching VM implementation

▪ Uses less space

▪ Linear time for non-grammar, non-lookaround

▪ Expressions are greedy and possessive

Rosie Pattern Language 
(and all PEG grammars)

Regular 
Expressions  

always fails!

Automated conversion of regex to RPL
▪ A practical implementation is underway



A “little language” built like a big language

1. Parser is Rosie itself (self-hosted) 
2. Macro expansion phase 

• Today, macros written in Lua 
• Future? 

3. Conversion to tree representation 
4. Optimizations 

• Inlining (always possible with pure functions!) 
• Common sub-expression elimination 
• Lots of small opportunities also 

5. Code generation 
• Further optimizations, e.g. peephole

Static 
Analysis!

New 
Optimizations 

Can Be 
Added

More user 
control

Open for 
Tooling



Using Rosie in programs

Today:

Once and future:

Haskell



Implement features 
▪ Optimizations 
▪ Language-specific libs 
‣ Improve or create 
‣ Python, R, Go, Java, … 
▪ User-written extensions 
‣ Output encoders 
‣ Macros 
‣ Character sets

Write Tools 
▪ Package info 
▪ Better trace (compact) 
▪ Linter 
▪ Notebook (Jupyter?) 
▪ Integrations 
‣ scikit-learn 
‣ Spark

make;  
make install (optional)

Contribute Patterns 
▪ Domain-specific 
▪ Authoritative 
‣ E.g. from RFC 
▪ Non-English patterns!  
▪ “Looks like” (recognizers) 
▪ Byte-encoded data?

Join the Rosie community!
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Write Tools 
▪ Package info 
▪ Better trace (compact) 
▪ Linter 
▪ Notebook (Jupyter?) 
▪ Integrations 
‣ scikit-learn 
‣ Spark

make;  
make install (optional)

Contribute Patterns 
▪ Domain-specific 
▪ Authoritative 
‣ E.g. from RFC 
▪ Non-English patterns!  
▪ “Looks like” (recognizers) 
▪ Byte-encoded data?

Join the Rosie community!

Or: brew install rosie

Also: pip install rosie



Thank you!



Rosie Pattern Language
▪ Pattern libraries 
– Standard library, including full Unicode (UTF-8) support 
– Community libraries (e.g. GitHub) 
– User libraries 

▪ Output formats 
– Colorized text for humans 
– JSON for programs 
– Full lines or just matches (like grep) 
– And others… 

▪ Development tools 
– Command line interface, read/eval/print loop 
– Trace output 
– Unit tests (automated) 
– Packages (shareable) 

▪ Built for big data but makes a better grep 
– Readable, maintainable 
– Works well with git/diff, pipelines (unit tests), dependency mgmt

Formal basis:

✦ Parser combinators 
✦ Based on Parsing Exp. Grammars

✦ Good performance, often linear 
✦ Not a “packrat” implementation



Additional slides follow…





Summary

Faster 
✦ Dev time:  
✓ library of patterns you don’t have to write 
✓new patterns composed of existing patterns 

✦ Run time: matching performance very good 

Better 
✦ shareable libraries 
✦ conformance to RFCs 
✦ readable syntax, and strict semantics (and no flags) 
✦ plays well with DevOps tools (git/diff, package management, unit tests) 

Cheaper 
✦ ROI in reduced development and maintenance costs 
✦ And, it’s free open source software (MIT license)



1. Mining source code repositories
▪ “Micro-grammar” approach:  

How to build static checking systems using orders 
of magnitude less code by Brown, Nötzli, Engler 

▪ NCSU students: 6 features x 10 languages
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1. Mining source code repositories
▪ “Micro-grammar” approach:  

How to build static checking systems using orders 
of magnitude less code by Brown, Nötzli, Engler 

▪ NCSU students: 6 features x 10 languages

2. Application log processing (streaming or batch)

3. Secure engineering principle: Parse everything!
The most critical risk in every OWASP report since 2003:  Injection attacks (unvalidated input)  
Best practice:  Whitelist valid input, which requires parsing every input
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RPL: Familiar concepts (and syntax)

To regex, and beyond!


• Structured output, not flat

• Sane syntax

• A few key concepts

• Auto tokenization

• Package system

• Macros

• Unit tests

• REPL

• Trace output

Differences


• Always greedy

• Always possessive

• Choices are ordered



Patterns in the standard library (v1.0.0)

▪ Collections 
– net.any, date.any, etc. 
– all.things 

▪ Commonly needed 
– int, float, hex, and other numbers 
– several kinds of identifiers 
– path names for Unix and Windows 
– GUIDs 
▪ Network patterns 

– ip address (v4, v6, mixed), domain name, 
email address, url, URI, MAC, HTTP 

▪ Timestamps 
– RFC3339, RFC2822, and more than a 

dozen other common formats

▪ CSV data 
–  delimiters: , ; | 
–  quoted fields: “foo” or ‘bar’ 
–  escapes: "" or \" or \"\” 
▪ JSON data 

–  full parse 
–  match nested and balanced {} []

"44

▪ Source code features 
– 10 popular languages 

▪ De-structuring 
– E.g.  “CSC316” ==> “CSC”, “316” 
– E.g.  “(1.2, 3.77, 0)” ==> “1.2”, “3.77”, “0” 

▪ Log files 
– syslog constituents (covers most log files) 
– Java exceptions, Python tracebacks

C
om

m
un

ity



There are faster parsers for formats like JSON and CSV!

▪ Why use Rosie to parse JSON or CSV when there are special-purpose solutions for 
those that are very fast? 

▪ Because you’ll find those formats embedded into: 

▪ Semi-structured data, e.g. JSON-formatted log messages 

▪ Unstructured data, e.g. CSV as part of a larger piece of text/doc 

▪ And in those cases, you can either separate the input and use different parsers on each 
part, or you can use one parser for the whole thing 

▪ It comes down to volume, perhaps:  

▪ Specialized tools will run faster, and you’ll need them if the volume of data in that 
format is high.   

▪ Otherwise, the “Swiss Army knife” approach may be better



The formal basis of RPL
▪ Rosie’s operators are parser combinators 

– Based on Parsing Expression Grammars  
– Not CFG (slow!) or regex (limited!) 
– Express all deterministic (unambiguous) CFLs 
– And some non-CFLs, e.g. anbncn  

– Key advantage: can match recursively structured input 

▪ PEGs [Ford, 2004] 
– “Scanner-less parsing” 
– Linear time matching (at space cost) 
– Languages recognized by PEGs are 
▪ A superset of regular languages 
▪ All languages recognized by LL(k) and LR(k) parsers 

▪ LPEG library [Ierusalimschy, 2008]  
➡ Gives a space-efficient PEG matching algorithm 
➡ Linear time in input size (non-grammars, no look-around) 

Rosie’s matching engine is an 
enhanced version of LPEG



Rosie is self-hosting
▪ Rosie is a parser, and Rosie is used to parse Rosie Pattern Language 

▪ About 115 lines of RPL (core version) to define the current RPL version 

▪ Could support multiple versions of RPL, even different dialects 

▪ Non-trivial user extensions to RPL can be enabled by: 
– Specifying RPL for the extension (to RPL) 
– Writing a compiler “plug-in” for the extension 
– The compiler plug-in interface has not yet been designed… hint!

$ rosie match -o data '!{[:space:]*$} !{[:space:]* "--"}' rpl_1_2.rpl | wc -l 
     115

Match non-blank, non-comment lines of RPL:



Roadmap
“If you want to go fast, go alone. 
 If you want to go far, go together.”         
                                                                                “Proverb”
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Roadmap

Extensibility 
User-written macros

User-written output encoders

Command line/scripting convenience 
Traverse directories

Follow links or not, etc.

Compiler Optimizations 
Common subexpression elimination

New vm instructions

Flow analysis

Pattern generation 
Algorithmic, e.g. from static analysis

Statistical / ML

Ahead of time compilation 
Fast startup

Small matching run-time (~50Kb binary)

Regex-to-rosie converter 
Re-use existing regex

Give them unit tests

Debug them


