
Dr. Jamie A. Jennings
Department of Computer Science
NC State University
27 April 2019

Fast, Functional Text Matching:
Rosie Pattern Language

On the interwebs:
@jamietheriveter

https://rosie-lang.org
https://gitlab.com/rosie-pattern-language

http://twitter.com/jamietheriveter
http://twitter.com/jamietheriveter
http://rosie-lang.org

Expression-based language

Expression-based language

Functions are values, can be composed

Expression-based language

Functions are values, can be composed

Lexical scope

Expression-based language

Functions are values, can be composed

Lexical scope

Packages like in scheme48, Go, others

Expression-based language

Functions are values, can be composed

Lexical scope

Compile-time meta-programming

Packages like in scheme48, Go, others

Expression-based language

Functions are values, can be composed

Lexical scope

Compile-time meta-programming

Packages like in scheme48, Go, others

Prelude like in Haskell

Expression-based language

Functions are values, can be composed

Lexical scope

Environment model
 like a “Lisp-1”

Compile-time meta-programming

Packages like in scheme48, Go, others

Prelude like in Haskell

Expression-based language

Functions are values, can be composed

Lexical scope

Environment model
 like a “Lisp-1”

Compile-time meta-programming

Packages like in scheme48, Go, others

Prelude like in Haskell

But…

why???

Type inference
Using type inference

Writing regex on the fly Save RPL in files

Reading cryptic syntax PL-like syntax

Writing regex on the fly Save RPL in files

Reading cryptic syntax PL-like syntax

Exceptions to rules Few special cases

Writing regex on the fly Save RPL in files

Reading cryptic syntax PL-like syntax

Exceptions to rules Few special cases

Using an ad hoc
collection of tools

Tooling included (and
extensible)

Writing regex on the fly Save RPL in files

Raison d'être

Mine data from tools
Make predictions
that help developers

http://www.ibm.com

Raison d'être

Mine data from tools
Make predictions
that help developers

http://www.ibm.com

➡ My team had to write lots of regex

Raison d'être

Mine data from tools
Make predictions
that help developers

http://www.ibm.com

➡ My team had to write lots of regex
➡ We found that regex technology does not scale

1. # of people, over time
2. # of patterns
3. data volume and velocity

Raison d'être

Mine data from tools
Make predictions
that help developers

http://www.ibm.com

➡ My team had to write lots of regex
➡ We found that regex technology does not scale

1. # of people, over time
2. # of patterns
3. data volume and velocity

➡ So I designed Rosie Pattern Language

Raison d'être

Mine data from tools
Make predictions
that help developers

http://www.ibm.com

➡ My team had to write lots of regex
➡ We found that regex technology does not scale

1. # of people, over time
2. # of patterns
3. data volume and velocity

➡ So I designed Rosie Pattern Language

Raison d'être

Mine data from tools
Make predictions
that help developers

rosie-lang.org

http://www.ibm.com

➡ My team had to write lots of regex
➡ We found that regex technology does not scale

1. # of people, over time
2. # of patterns
3. data volume and velocity

➡ So I designed Rosie Pattern Language

Raison d'être

Mine data from tools
Make predictions
that help developers

Department of
Computer Science

rosie-lang.org

http://www.ibm.com

Current approach: regex
“If the only tool you have is a hammer…”

 Abraham Maslow

Regular expressions as tools:

grep -v “^#\|^’\|^\/\/”
egrep -o '((\d{1,3})([.]\d{1,3}){2}|\w+([.]\w+)+)'
sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/ /g'

On the command line:

Regular expressions as tools:

grep -v “^#\|^’\|^\/\/”
egrep -o '((\d{1,3})([.]\d{1,3}){2}|\w+([.]\w+)+)'
sed -e ':a' -e 'N' -e '$!ba' -e 's/\n/ /g'

On the command line:

Regex are notoriously hard to read & maintain

▪ Dense, cryptic syntax

▪ Semantics vary across implementations

▪ Flags that affect the semantics are not part of the pattern

▪ Regex do not easily compose

“Some people, when confronted with a problem, think
 ‘I know, I'll use regular expressions.’
 Now they have two problems.”

Jamie Zawinski
http://regex.info/blog/2006-09-15/247

http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247

Regular expressions

Match an email address (obviously!):

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?
=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?
^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-
\x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]
{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])
[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

Match a date with slashes, like 1/1/1970:

^\d{1,2}\/\d{1,2}\/\d{4}$

Regular expressions

Match an email address (obviously!):

^((?>[a-zA-Z\d!#$%&'*+\-/=?^_`{|}~]+\x20*|"((?
=[\x01-\x7f])[^"\\]|\\[\x01-\x7f])*"\x20*)*(?
<angle><))?((?!\.)(?>\.?[a-zA-Z\d!#$%&'*+\-/=?
^_`{|}~]+)+|"((?=[\x01-\x7f])[^"\\]|\\[\x01-
\x7f])*")@(((?!-)[a-zA-Z\d\-]+(?<!-)\.)+[a-zA-Z]
{2,}|\[(((?(?<!\[)\.)(25[0-5]|2[0-4]\d|[01]?\d?
\d)){4}|[a-zA-Z\d\-]*[a-zA-Z\d]:((?=[\x01-\x7f])
[^\\\[\]]|\\[\x01-\x7f])+)\])(?(angle)>)$

Match a date with slashes, like 1/1/1970:

^\d{1,2}\/\d{1,2}\/\d{4}$

Rosie Pattern Language

Other regex collections? Grok does this.

Other regex collections? Grok does this.

Caveats
✦ Name collisions? Some versions will use the first

one, some the last
✦ No packages, hierarchy, or dependencies
✦ They are still unreadable and unmaintainable!

And they don’t play well with dev tools

And they don’t play well with dev tools

RPL has syntax like a programming language

→ It reads like code
→ It diffs like code
→ It debugs like code

Regex performance is surprisingly variable

Regular expression matching can be very efficient:
linear time in the size of the input.

“The worst-case exponential-time backtracking strategy
[is] used almost everywhere [but grep and RE2], including
ed, sed, Perl, PCRE, and Python.”

(Russ Cox https://swtch.com/~rsc/regexp/regexp2.html)

https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)
https://swtch.com/~rsc/regexp/regexp2.html)

Regex performance is surprisingly variable

 Matching this 29-character string takes around 36 seconds in Perl*
$input = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”;
$re = “a?
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”;

 And this more realistic example takes around 65 seconds in Perl*
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
Bronze,Bronze,Gold,Silver”;
$re = “^(.*?,){29}Gold”;

(*) Perl 5.16.3 darwin-thread-multi-2level

Regex performance is surprisingly variable

 Matching this 29-character string takes around 36 seconds in Perl*
$input = “aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”;
$re = “a?
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa”;

 And this more realistic example takes around 65 seconds in Perl*
$input = “1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
Bronze,Bronze,Gold,Silver”;
$re = “^(.*?,){29}Gold”;

(*) Perl 5.16.3 darwin-thread-multi-2level

In RPL, expressions are greedy and possessive.

→ Backtracking is explicit
→ To get exponential backtracking, you write it that way
→ Today (v1.1.x) such RPL patterns have exponential size

RPL makes it difficult to be accidentally inefficient.

Rosie Pattern Language
“All progress depends on the unreasonable [woman]”

George Bernard Shaw, paraphrased

RPL is designed like a programming language

RPL is designed like a programming language

Comments

Modules

Identifie
rs

Whitespace

Quoted lite
rals

Macro
s

(not sh
own)Unit te

sts

Can your ‘grep’ do this?

-o Output format

 subs ==> sub-matches

pattern is net.url
 ==> namespace net, pattern url

Named patterns

Can your ‘grep’ do this?
Customizable
Output
highlighting

Can your ‘grep’ do this?
Customizable
Output
highlighting

Can your ‘grep’ do this?
Customizable
Output
highlighting

Matching line

num.denoted_hex

num.hex, a sub-match

Structured
output option

Can your ‘grep’ do this?

json
color

boolean

Matching Engine

RPL

Compiler

+

Rosie
Implementation

Performance
“I want to believe” Fox Mulder, FBI

Performance
Worse

Better

Grok/ruby

Grok/jruby

Rosie 1.0.0

Notes:

1. Log entry parsing is one narrow use case.

2. Hard to design fair comparisons.

3. Rosie output is nested JSON; Grok output

is flat lists.

Debugging
“To err is human, but to really foul things up you

need a computer.”

 Paul R. Ehrlich

Trace a (mis-)match

Trace a (mis-)match

Pattern definition

Input text

Matching steps

Read-eval-print loop

Read-eval-print loop

snip

snip

✦ Define patterns

✦ Try them

✦ Debug (trace) them

Read-eval-print loop

snip

snip

✦ Define patterns

✦ Try them

✦ Debug (trace) them

Executable unit tests

Executable unit tests

Part of the documentation

Regression when making changes

Use them in app build/compile stage

Formal basis
“Language is a process of free creation [though] its
laws and principles are fixed” Noam Chomsky

Chomsky hierarchy

Formal basis

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Regular
Expressions
(strict)

Chomsky hierarchy

Formal basis

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
(and all PEG
grammars)

Regular
Expressions
(strict)

Chomsky hierarchy

Formal basis

By J. Finkelstein - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9405226

Rosie
Pattern
Language
(and all PEG
grammars)

Regular
Expressions
(strict)

Chomsky hierarchy

Open
Question:
PEG > CFG

Formal basis

Comparison to regex: RPL is based on a different formalism

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

Rosie Pattern Language
(and all PEG grammars)

Regular
Expressions

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

▪ Supports recursive pattern definitions

Rosie Pattern Language
(and all PEG grammars)

Regular
Expressions

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

▪ Supports recursive pattern definitions

Rosie Pattern Language
(and all PEG grammars)

Regular
Expressions

Perl:

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

▪ Supports recursive pattern definitions

▪ Packrat implementation guarantees linear time

Rosie Pattern Language
(and all PEG grammars)

Regular
Expressions

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

▪ Supports recursive pattern definitions

▪ Packrat implementation guarantees linear time

▪ Rosie uses a Matching VM implementation

▪ Uses less space

▪ Linear time for non-grammar, non-lookaround

Rosie Pattern Language
(and all PEG grammars)

Regular
Expressions

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

▪ Supports recursive pattern definitions

▪ Packrat implementation guarantees linear time

▪ Rosie uses a Matching VM implementation

▪ Uses less space

▪ Linear time for non-grammar, non-lookaround

▪ Expressions are greedy and possessive

Rosie Pattern Language
(and all PEG grammars)

Regular
Expressions

always fails!

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

▪ Supports recursive pattern definitions

▪ Packrat implementation guarantees linear time

▪ Rosie uses a Matching VM implementation

▪ Uses less space

▪ Linear time for non-grammar, non-lookaround

▪ Expressions are greedy and possessive

Rosie Pattern Language
(and all PEG grammars)

Regular
Expressions

always fails!

Comparison to regex: RPL is based on a different formalism

Parsing Expression Grammars
▪ Strictly more powerful than regular expressions

▪ Supports recursive pattern definitions

▪ Packrat implementation guarantees linear time

▪ Rosie uses a Matching VM implementation

▪ Uses less space

▪ Linear time for non-grammar, non-lookaround

▪ Expressions are greedy and possessive

Rosie Pattern Language
(and all PEG grammars)

Regular
Expressions

always fails!

Automated conversion of regex to RPL
▪ A practical implementation is underway

A “little language” built like a big language

1. Parser is Rosie itself (self-hosted)
2. Macro expansion phase

• Today, macros written in Lua
• Future?

3. Conversion to tree representation
4. Optimizations

• Inlining (always possible with pure functions!)
• Common sub-expression elimination
• Lots of small opportunities also

5. Code generation
• Further optimizations, e.g. peephole

Static
Analysis!

New
Optimizations

Can Be
Added

More user
control

Open for
Tooling

Using Rosie in programs

Today:

Once and future:

Haskell

Implement features
▪ Optimizations
▪ Language-specific libs
‣ Improve or create
‣ Python, R, Go, Java, …
▪ User-written extensions
‣ Output encoders
‣ Macros
‣ Character sets

Write Tools
▪ Package info
▪ Better trace (compact)
▪ Linter
▪ Notebook (Jupyter?)
▪ Integrations
‣ scikit-learn
‣ Spark

make;
make install (optional)

Contribute Patterns
▪ Domain-specific
▪ Authoritative
‣ E.g. from RFC
▪ Non-English patterns!
▪ “Looks like” (recognizers)
▪ Byte-encoded data?

Join the Rosie community!

Implement features
▪ Optimizations
▪ Language-specific libs
‣ Improve or create
‣ Python, R, Go, Java, …
▪ User-written extensions
‣ Output encoders
‣ Macros
‣ Character sets

Write Tools
▪ Package info
▪ Better trace (compact)
▪ Linter
▪ Notebook (Jupyter?)
▪ Integrations
‣ scikit-learn
‣ Spark

make;
make install (optional)

Contribute Patterns
▪ Domain-specific
▪ Authoritative
‣ E.g. from RFC
▪ Non-English patterns!
▪ “Looks like” (recognizers)
▪ Byte-encoded data?

Join the Rosie community!

Or: brew install rosie

Also: pip install rosie

Thank you!

Rosie Pattern Language
▪ Pattern libraries
– Standard library, including full Unicode (UTF-8) support
– Community libraries (e.g. GitHub)
– User libraries

▪ Output formats
– Colorized text for humans
– JSON for programs
– Full lines or just matches (like grep)
– And others…

▪ Development tools
– Command line interface, read/eval/print loop
– Trace output
– Unit tests (automated)
– Packages (shareable)

▪ Built for big data but makes a better grep
– Readable, maintainable
– Works well with git/diff, pipelines (unit tests), dependency mgmt

Formal basis:

✦ Parser combinators
✦ Based on Parsing Exp. Grammars

✦ Good performance, often linear
✦ Not a “packrat” implementation

Additional slides follow…

Summary

Faster
✦ Dev time:
✓ library of patterns you don’t have to write
✓new patterns composed of existing patterns

✦ Run time: matching performance very good

Better
✦ shareable libraries
✦ conformance to RFCs
✦ readable syntax, and strict semantics (and no flags)
✦ plays well with DevOps tools (git/diff, package management, unit tests)

Cheaper
✦ ROI in reduced development and maintenance costs
✦ And, it’s free open source software (MIT license)

1. Mining source code repositories
▪ “Micro-grammar” approach:

How to build static checking systems using orders
of magnitude less code by Brown, Nötzli, Engler

▪ NCSU students: 6 features x 10 languages

1. Mining source code repositories
▪ “Micro-grammar” approach:

How to build static checking systems using orders
of magnitude less code by Brown, Nötzli, Engler

▪ NCSU students: 6 features x 10 languages

2. Application log processing (streaming or batch)

1. Mining source code repositories
▪ “Micro-grammar” approach:

How to build static checking systems using orders
of magnitude less code by Brown, Nötzli, Engler

▪ NCSU students: 6 features x 10 languages

2. Application log processing (streaming or batch)

3. Secure engineering principle: Parse everything!
The most critical risk in every OWASP report since 2003: Injection attacks (unvalidated input)
Best practice: Whitelist valid input, which requires parsing every input

RPL: Familiar concepts (and syntax)

RPL: Familiar concepts (and syntax)
Differences

• Always greedy

• Always possessive

• Choices are ordered

RPL: Familiar concepts (and syntax)

To regex, and beyond!

• Structured output, not flat

• Sane syntax

• A few key concepts

• Auto tokenization

• Package system

• Macros

• Unit tests

• REPL

• Trace output

Differences

• Always greedy

• Always possessive

• Choices are ordered

Patterns in the standard library (v1.0.0)

▪ Collections
– net.any, date.any, etc.
– all.things

▪ Commonly needed
– int, float, hex, and other numbers
– several kinds of identifiers
– path names for Unix and Windows
– GUIDs
▪ Network patterns

– ip address (v4, v6, mixed), domain name,
email address, url, URI, MAC, HTTP

▪ Timestamps
– RFC3339, RFC2822, and more than a

dozen other common formats

▪ CSV data
– delimiters: , ; |
– quoted fields: “foo” or ‘bar’
– escapes: "" or \" or \"\”
▪ JSON data

– full parse
– match nested and balanced {} []

"44

▪ Source code features
– 10 popular languages

▪ De-structuring
– E.g. “CSC316” ==> “CSC”, “316”
– E.g. “(1.2, 3.77, 0)” ==> “1.2”, “3.77”, “0”

▪ Log files
– syslog constituents (covers most log files)
– Java exceptions, Python tracebacks

C
om

m
un

ity

There are faster parsers for formats like JSON and CSV!

▪ Why use Rosie to parse JSON or CSV when there are special-purpose solutions for
those that are very fast?

▪ Because you’ll find those formats embedded into:

▪ Semi-structured data, e.g. JSON-formatted log messages

▪ Unstructured data, e.g. CSV as part of a larger piece of text/doc

▪ And in those cases, you can either separate the input and use different parsers on each
part, or you can use one parser for the whole thing

▪ It comes down to volume, perhaps:

▪ Specialized tools will run faster, and you’ll need them if the volume of data in that
format is high.

▪ Otherwise, the “Swiss Army knife” approach may be better

The formal basis of RPL
▪ Rosie’s operators are parser combinators

– Based on Parsing Expression Grammars
– Not CFG (slow!) or regex (limited!)
– Express all deterministic (unambiguous) CFLs
– And some non-CFLs, e.g. anbncn

– Key advantage: can match recursively structured input

▪ PEGs [Ford, 2004]
– “Scanner-less parsing”
– Linear time matching (at space cost)
– Languages recognized by PEGs are
▪ A superset of regular languages
▪ All languages recognized by LL(k) and LR(k) parsers

▪ LPEG library [Ierusalimschy, 2008]
➡ Gives a space-efficient PEG matching algorithm
➡ Linear time in input size (non-grammars, no look-around)

Rosie’s matching engine is an
enhanced version of LPEG

Rosie is self-hosting
▪ Rosie is a parser, and Rosie is used to parse Rosie Pattern Language

▪ About 115 lines of RPL (core version) to define the current RPL version

▪ Could support multiple versions of RPL, even different dialects

▪ Non-trivial user extensions to RPL can be enabled by:
– Specifying RPL for the extension (to RPL)
– Writing a compiler “plug-in” for the extension
– The compiler plug-in interface has not yet been designed… hint!

$ rosie match -o data '!{[:space:]*$} !{[:space:]* "--"}' rpl_1_2.rpl | wc -l
 115

Match non-blank, non-comment lines of RPL:

Roadmap
“If you want to go fast, go alone.
 If you want to go far, go together.”
 “Proverb”

Roadmap

Roadmap

Extensibility
User-written macros

User-written output encoders

Command line/scripting convenience
Traverse directories

Follow links or not, etc.

Compiler Optimizations
Common subexpression elimination

New vm instructions

Flow analysis

Pattern generation
Algorithmic, e.g. from static analysis

Statistical / ML

Ahead of time compilation
Fast startup

Small matching run-time (~50Kb binary)

Regex-to-rosie converter
Re-use existing regex

Give them unit tests

Debug them

